Later-stage Minimum Bayes-Risk Decoding for Neural Machine Translation
نویسندگان
چکیده
For extended periods of time, sequence generation models rely on beam search as the decoding algorithm. However, the performance of beam search degrades when the model is over-confident about a suboptimal prediction. In this work, we enhance beam search by performing minimum Bayes-risk (MBR) decoding for some extra steps at a later stage. In our experiments, we found that the conventional MBR reranking is only effective with a large beam size. In contrast, later-stage MBR decoding is shown to work regardless of the choice of beam size, and outperform simple MBR reranking. Additionally, we found that the computation of Bayes risks can be much faster by calculating the discrepancies on GPU in batch mode.
منابع مشابه
Neural Machine Translation by Minimising the Bayes-risk with Respect to Syntactic Translation Lattices
We present a novel scheme to combine neural machine translation (NMT) with traditional statistical machine translation (SMT). Our approach borrows ideas from linearised lattice minimum Bayes-risk decoding for SMT. The NMT score is combined with the Bayes-risk of the translation according the SMT lattice. This makes our approach much more flexible than n-best list or lattice rescoring as the neu...
متن کاملEfficient Path Counting Transducers for Minimum Bayes-Risk Decoding of Statistical Machine Translation Lattices
This paper presents an efficient implementation of linearised lattice minimum Bayes-risk decoding using weighted finite state transducers. We introduce transducers to efficiently count lattice paths containing n-grams and use these to gather the required statistics. We show that these procedures can be implemented exactly through simple transformations of word sequences to sequences of n-grams....
متن کاملLattice Minimum Bayes-Risk Decoding for Statistical Machine Translation
We present Minimum Bayes-Risk (MBR) decoding over translation lattices that compactly encode a huge number of translation hypotheses. We describe conditions on the loss function that will enable efficient implementation of MBR decoders on lattices. We introduce an approximation to the BLEU score (Papineni et al., 2001) that satisfies these conditions. The MBR decoding under this approximate BLE...
متن کاملMinimum Bayes-Risk Decoding for Statistical Machine Translation
We present Minimum Bayes-Risk (MBR) decoding for statistical machine translation. This statistical approach aims to minimize expected loss of translation errors under loss functions that measure translation performance. We describe a hierarchy of loss functions that incorporate different levels of linguistic information from word strings, word-to-word alignments from an MT system, and syntactic...
متن کاملMixture Model-based Minimum Bayes Risk Decoding using Multiple Machine Translation Systems
We present Mixture Model-based Minimum Bayes Risk (MMMBR) decoding, an approach that makes use of multiple SMT systems to improve translation accuracy. Unlike existing MBR decoding methods defined on the basis of single SMT systems, an MMMBR decoder reranks translation outputs in the combined search space of multiple systems using the MBR decision rule and a mixture distribution of component SM...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1704.03169 شماره
صفحات -
تاریخ انتشار 2017